
50 The Delphi Magazine Issue 71

ADO.NET Explored
by Guy Smith-Ferrier

ADO.NET is Microsoft’s data
access layer in Visual

Studio.NET. At first sight it can be
viewed as a progression of the ADO
which we have come to know over
the past few years. This article
explores the new architecture,
illustrates many of the differences
between ADO and ADO.NET, and
shows how ADO.NET can be sup-
ported in Delphi 4, 5 and 6 today.

The code shown in this article is
based on .NET Public Beta 1. You
can expect to see Public Beta 2 in
July 2001, where some classes,
assemblies and methods have
been renamed, in addition to other
changes. Where the changes are
already known they will be pointed
out so that you can translate the
examples as necessary.

ADO.NET, at one time called
ADO+ (and even earlier referred to
as XDO because of its fundamental
dependence on XML), is a redesign
of ADO to better suit the needs of
web developers. As you will see,
there are many similarities
between ADO and ADO.NET, but it
is also true to say that there are
just as many differences. As a con-
sequence, porting ADO code to
ADO.NET is likely to need a certain
amount of reworking. To under-
stand the philosophy behind this

redesign we should first look at
what shortcomings ‘classic’ ADO
suffers from (‘classic’ and ‘legacy’
have been phenomenally success-
ful in recent years in installing a
sense of guilt and unworthiness in
those who dare to stay with tried
and trusted solutions instead of
jumping ship and trying the latest
and greatest).

ADO is based on COM and this is
perhaps the single largest reason
why its success is less than
meteoric in web development.
ADO’s previous attempt at data
transmission from server to client
and client to server was Remote
Data Services (RDS). RDS was not
widely embraced by ADO develop-
ers. One of the problems is that
RDS is based on COM, which
mostly only runs on Windows. This
is a problem for interoperability,
particularly over the internet. In
addition, the transmission of a
recordset from one process to
another (eg server to client)
requires COM marshalling, and
this incurs a performance penalty
not only with the process of
moving the data but also in the
translation of database data types
to COM data types and back again.
But perhaps the biggest reason for
COM’s failure in web development
is that COM calls cannot always
penetrate firewalls.

Enter ADO.NET. ADO.NET uses a
similar model to ‘classic’ ADO in
that it has connections and com-
mands, but it differs in that there is
no RecordSet. ADO’s RecordSet was
considered to solve too many
problems single-handedly, so it
has been decomposed into smaller
more focused classes. Where
ADO.NET scores over classic ADO
in web development is in its data
transmission format. ADO.NET
uses XML to communicate data
between processes. This means
that the client software can be
from any vendor running on any
platform. The same is true for the
server software. It also means that
there is no COM marshalling and
no type conversion to or from
COM data types. Lastly, as XML is
just plain text, data can pass
through firewalls.

Table 1 shows the fundamental
ADO.NET classes and their nearest
equivalent classic ADO classes.
We will look at examples of most of
these classes throughout this
article.

ADO.NET offers a choice of
classes. In Public Beta 1 there are
two sets of classes: ADO and SQL.
The ADO classes (renamed to
OLEDB classes in Public Beta 2)
are the closest link to classic ADO.
They use traditional OLE DB pro-
viders and the same connection
strings. The SQL classes are specif-
ically written for SQL Server 7 and
2000 and do not use traditional
OLE DB. Instead they communi-
cate directly with SQL Server using
Tabular Data Stream (TDS), pro-
viding significantly better perfor-
mance. Figure 1 shows the class
hierarchies for the Connection and
Command classes.

Consequently, when you write
an ADO.NET application, you make
a conscious decision to commit
yourself to one of the two sets of
classes: ADO or SQL. Of course,
this only refers to the code which
defines the variables and con-
structs new objects, as the remain-
ing code is compatible between
sets of classes, because they share
the same ancestors. However, it
represents an interesting depar-
ture from the previous ADO philos-
ophy. In addition to the specific

ADO.NET Classic ADO Equivalent

Connection Connection

Command Command

DataSetCommand Data Manipulation methods of Recordset

DataReader Forwards only, read-only cursor

DataSet (Set of DataTables)

DataTable Disconnected, client-side Recordset

DataColumn Field

DataRow

DataRelation SQL JOIN or MS Data Shape

➤ Table 1: ADO and ADO.NET.



July 2001 The Delphi Magazine 51

classes for SQL Server you can
expect to see explicit support for
Oracle, Exchange 2000 and, possi-
bly, Jet. It is likely that each of
these will have their own sets of
classes which, as a consequence of
their names, will hard wire your
applications into a specific
database.

Supporting
ADO.NET In Delphi
ADO.NET is a collection of ‘man-
aged’ classes. As such they are
hosted by the Common Language
Runtime (CLR) and cannot be
called directly by a non-managed
application, such as a Delphi appli-
cation. However, .NET includes a
COM Interoperability service
which allows .NET applications to
use COM and allows non-managed
applications to treat managed
classes as COM classes. It is this
latter facility which provides
Delphi with the bridge to ADO.NET.
.NET includes a utility called
REGASM.EXE in

C:\WINNT\Microsoft.NET\
Framework\v1.0.2204

which creates a COM wrapper for
.NET managed classes and creates
the appropriate registry entries to
allow the classes to be treated as
COM classes. The command in
Listing 1 creates a type library in
COMSystemData.DLL for the
System.Data assembly (an assem-
bly is akin to a managed DLL and
System.Data is the namespace
which contains both ADO and SQL
classes).

This will take several minutes to
execute, but once complete you

will be able to register the type
library (using TREGSVR or
REGSVR32). Next, import the regis-
tered type library into Delphi
(choose Project | Import Type
Library | and select ‘System_Data
(Version 1.0)’).

You will need to make some
changes before importing the type
library. Firstly, I recommend
unchecking the Generate Component
Wrapper checkbox. Secondly, you
will need to manually alter the
names of the .NET components to
prevent them from conflicting with
Delphi’s components. Specifically
this affects Delphi’s TADOCommand,
TADOConnection and TDataSet
classes. Now you can import the
type library. Unfortunately the
resulting files will not compile
because the file ComRuntimeLib-
rary_TLB.PAS contains definitions
of Byte, Int64, Single and Double
which are all existing types in
Delphi. You can either comment
these definitions out (for a quick
and dirty solution) or else rename
these types (and all of the uses of
these types in all imported .PAS
files). Finally, change Currency to
Double in System_XML_TLB.PAS.

You are now ready to use ADO.NET
in Delphi.

Create a new application, add
System_Data_TLB and ComObj to the
uses clause, and add a button with
the code in Listing 2.

This code simply executes
SELECT * FROM CUSTOMERS and isn’t
even interested in catching the
result set. Of course, in ADO.NET
the use of the ADO classes to
access SQL Server is a rather
unwise choice (because you would
use the SQL classes instead). As
you can see, we treat the ADO.NET
classes as regular COM classes
using CreateCOMObject and the as
operator (and suffering from
having to call Set_Connect-
ionString and Set_ActiveConn-
ection instead of making regular
assignments). Notice, however,
that we cannot pass parameters to
the class constructors when using
COM objects, so initial values have
to be set separately on subsequent
lines. This difference represents a
significant problem for .NET
classes which only allow certain
values to be set in the constructor.

Using SQLConnection
And SQLCommand
To use the SQL Server classes
instead of the ADO classes simply
replace ADOConnection with
SQLConnection and ADOCommand with
SQLCommand. In addition to this you
will need to modify the connection
string. Since the SQL classes know
that they will be using SQL Server
and only SQL Server, the specifica-
tion of a provider is irrelevant and
unwanted so you must remove

ADOConnection SQLConnection

DBConnection

ADOCommand SQLCommand

DBCommand

Component

Object

➤ Figure 1: Connection and
Command classes.

REGASM "C:\WINNT\Microsoft.NET\Framework\v1.0.2204\System.Data.DLL"
/tlb: COMSystemData.DLL

procedure TForm1.Button1Click(Sender: TObject);
var
oConn: ADOConnection;
oComm: ADOCommand;

begin
oConn:=CreateCOMObject(Class_ADOConnection) as ADOConnection;
oConn.Set_ConnectionString(
'Provider=SQLOLEDB.1;Persist Security Info = False;'+
'Initial Catalog = Northwind;User ID = sa;');

oConn.Open;
oComm:=CreateCOMObject(Class_ADOCommand) as ADOCommand;
oComm.Set_ActiveConnection(oConn);
oComm.Set_CommandText('SELECT * FROM CUSTOMERS');
oComm.Execute;
oConn.Close;

end;

➤ Above: Listing 1 ➤ Below: Listing 2



52 The Delphi Magazine Issue 71

the Provider argument and add a
Data Source argument giving the
SQL Server name.

DataReaders
So far so good but we need a way to
read the data. Enter the DataReader.
DataReader is equivalent to a
read-only, forwards only cursor.
ADO developers sometimes refer
to this as a firehose cursor. (In
dbExpress this is equivalent to any
of the TCustomSQLDataSet descen-
dants.) Figure 2 shows the
DataReader and DataSetCommand
class hierarchy (we will return to
the DataSetCommand later).

The Listing 3 code snippet adds
the CompanyName field of every
record to a ListBox using an
ADOCommand supplied as an
argument.

The command is executed and
the DataReader attached to the
result set. (In Public Beta 2 the
Execute line will change to
oDR:=oComm.Execute). Notice that
the while loop does not contain a
MoveNext as DataSetReader.Read
reads the next record and returns
False if the end of the result set has
been reached.

In this Delphi example the Exe-
cute method is called Execute_2
because it has been overloaded

and COM doesn’t support over-
loading, so the type library import
facility has had to generate a
unique name for the overloaded
method. In addition, we have to
add a workaround as we cannot
pass the oDR ADODataReader to Exe-
cute_2 because it is a different type
to that which Execute_2 expects. So
we pass oWorkAround and, on the
next line, typecast it to an
ADODataReader.

DataSetCommands
The DataReader is fine if all you
want to do is to read data. To read
and update data you will need to
use a DataSetCommand (which will be
renamed to DataAdapter in Public
Beta 2). Fortunately for Delphi pro-
grammers, the DataSetCommand is
not a difficult class to comprehend,

because we already have a very
similar class in TUpdateSQL.
TUpdateSQL has DeleteSQL, Insert-
SQL and ModifySQL properties to
allow you to specify SQL which
executes when there is a need to
delete, insert or update the data.
DataSetCommand has DeleteCommand,
InsertCommand, SelectCommand and
UpdateCommand properties which
are all of type Command. One of the
benefits that DataSetCommand has
over TUpdateSQL is that, as the
properties are Command objects
instead of strings, these com-
mands can execute stored
procedures (which contain corre-
sponding DELETE, INSERT, SELECT
and UPDATE statements). Listing 4
shows a DataSetCommandbeing used
to retrieve a dataset.

In this code we create a new
ADODataSetCommand and set the
SELECT statement and then the con-
nection string. We then use
FillDataSet to fill the oDS DataSet
with data from the SELECT state-
ment. Finally, we iterate through
the collection of rows in the
Customers table.

Although the DataSetCommand
represents the standard way of
providing a read/write dataset, I
must confess a little disappoint-
ment with this solution. Like
Delphi’s TUpdateSQL, DataSet-
Command uses statically generated
SQL statements (either directly or
indirectly by using stored proce-
dures which contain statically gen-
erated SQL statements). Such
statements are fragile and do not
respond well to changes in the
database structure. As we all

ADODataReader SQLDataReader

DBDataReader

DBDataSetCommand

DataSetCommand

Component

Object

ADODataReader SQLDataReader

ADODataSetCommand SQLDataSetCommand

➤ Figure 2: DataReader and
DataSetCommand class
hierarchy.

procedure TForm1.ShowCustomers(oComm: ADOCommand);
var
oDR: ADODataReader;
oWorkAround: IDataReader;

begin
oComm.Execute_2(oWorkAround);
oDR:=oWorkAround as ADODataReader;
while oDR.Read do
ListBox1.Items.Add(oDR.GetString(2));

oDR.Close;
end;

var
oConn: ADOConnection;
oDSCommand: ADODataSetCommand;
oDS: DataSet;
oRows: RowsCollection;
intRow: integer;

begin
oConn:=CreateCOMObject(Class_ADOConnection) as ADOConnection;
oConn.Set_ConnectionString(
'Provider=SQLOLEDB.1;Persist Security Info = False;'+
'Initial Catalog = Northwind;User ID = sa;');

oConn.Open;
oDSCommand:=
CreateCOMObject(Class_ADODataSetCommand) as ADODataSetCommand;

oDSCommand.SelectCommand.Set_CommandText(
'SELECT * FROM CUSTOMERS');

oDSCommand.SelectCommand.Set_ActiveConnection(oConn);
oDS:=CreateCOMObject(Class_DataSet) as DataSet;
oDSCommand.FillDataSet_2(oDS, 'Customers');
oRows:=oDS.Tables.Get_Item_2('Customers').Rows;
for intRow:=0 to oRows.Count - 1 do
ListBox1.Items.Add(oRows.Item[intRow].Item[1]);

end;

➤ Above: Listing 3 ➤ Below: Listing 4



July 2001 The Delphi Magazine 53

know, database structures change
very frequently and any change
will require manual alteration of
the SQL statements. We do not get
this additional maintenance over-
head with dynamically generated
SQL statements and I foresee
developers either wasting time
pointlessly modifying SQL state-
ments or finding a rather more
slick solution.

When changes have been made
to any or all tables in the DataSet,
the entire batch can be applied
using DataSetCommand.Update in a
similar manner to ADO’s batch
updates. Thus all updates in the
database are applied in a single
operation. This is similar to
TClientDataSet.ApplyUpdates, but
it is a great step forwards over
ADO’s inadequate RecordSet.Up-
dateBatch.

DataSets, DataTables,
DataColumns, DataRows
And DataRelations
A DataSet is an in-memory data-
base. I use ‘database’ in its correct
sense here to describe a collection
of related tables. It is not like a
Delphi TDataSet, since TDataSet
represents a single table and
ADO.NET’s DataSet represents a
collection of related tables. The
DataSet contains DataTables and
DataRelations which describe the
relationships between the Data-
Tables. I, for one, am delighted
with this representation of a data-
base. At last we have an object-
based representation of the entire
database in memory. It seems
incredible that we have had to wait
until 2001 for such an obvious
concept from a major vendor.

The collection of classes shown
in Figure 3 is entirely database

independent and library independ-
ent. These classes can be used with
ADO classes and SQL classes alike
without the need of a library
specific prefix.

A DataTable is a set of rows and
columns which might equate to a
table in a database or a single
SELECT statement. This is the clos-
est ADO.NET gets to an ADO
Recordset and is most like a dis-
connected client-side Recordset.
Indeed, you can create in memory
tables just as you can in classic
ADO.

Listing 5 creates a DataSet called
SalesDB and a table called States
with two columns: STATE and NAME.
It ends by adding the table to the
DataSet. The DataSet is only
included in this example to show
the relationship with the
DataTable; it is not required in
order to create independent
DataTables. To add data just add
new rows, see Listing 6.

DataRelation is used to define
the relationships between tables in
a DataSet. Unfortunately, DataRel-
ation is one of the few ADO.NET

classes which accepts parameters
in its class constructor which
cannot be set after the object has
been constructed. This represents
a problem for .NET’s COM Interop
layer because parameters cannot
be passed to constructors in COM.
As a result, there appears to be no
way to create new DataRelation
objects through COM. However,
this problem might get resolved in
a future .NET beta or the problem
will become irrelevant when
Delphi supports .NET directly. For
the time being, though, Listing 7
shows what the code might look
like if we didn’t suffer from this
problem.

This is a simple example but
DataRelation has a ChildKey-
Constraint property which has
AcceptRejectRule, DeleteRule and
UpdateRule properties which allow
you to specify whether deletes
should set the child table’s foreign
keys to null and whether changing
the parent’s primary key should
cascade through all children and
so on.

Transporting The Data
DataSet supports many similar
methods for getting the data into
and out of a DataSet (see Table 2).

Some methods duplicate func-
tionality of other methods for con-
venience (eg ReadXML is the same as
ReadXMLSchema followed by
ReadXMLData). The separation of
reading the schema from reading
the data allows applications to

var
oDataSet: DataSet;
oTable: DataTable;
oColumn: DataColumn;

begin
oDataSet:=CreateCOMObject(Class_DataSet) as DataSet;
oDataSet.Set_DataSetName('SalesDB');
oTable:=CreateCOMObject(Class_DataTable) as DataTable;
oTable.Set_TableName('States');
oColumn:=CreateCOMObject(Class_DataColumn) as DataColumn;
oColumn.Set_ColumnName('State');
oTable.Columns.Add(oColumn);
oColumn:=CreateCOMObject(Class_DataColumn) as DataColumn;
oColumn.Set_ColumnName('Name');
oTable.Columns.Add(oColumn);
oDataSet.Tables.Add(oTable);

end;

oRow:=CreateCOMObject(Class_DataRow) as DataRow;
oRow.Set_Item_2('State', 'CA');
oRow.Set_Item_2('Name' , 'California');
oTable.Rows.Add_2(oRow);
oRow:=CreateCOMObject(Class_DataRow) as DataRow;
oRow.Set_Item_2('State', 'TX');
oRow.Set_Item_2('Name' , 'Texas');
oTable.Rows.Add_2(oRow);

➤ Above: Listing 5 ➤ Below: Listing 6

DataSet DataTable DataColumn

Component DataRelation DataRow

Object

➤ Figure 3



54 The Delphi Magazine Issue 71

read the schema locally (maybe
even from XML hardwired into the
program) and read the data
remotely. As long as the schema
information does not change or the
client is always kept in synch with
the server then there is no need to
continually transport the same
schema information over and over.
In addition to these methods there
are the XML, XMLData and XMLSchema
properties which are all
read/write.

The WriteDiffGram method
writes a DiffGram, which is an XML
document containing changes to
the data (including the previous
values). This is typically used to
send changes from the client to the
server. The changes are then read
in on the server using
ReadDiffGram.

The methods in Table 2 are all
overloaded so can accept the XML
source or destination in a variety of

ways. A simple filename can be
used for single tier applications
which simply use an XML docu-
ment as a database. This approach
is also useful for briefcase applica-
tions. Other choices are to use
Streams, TextReaders and
XMLReaders (or TextWriters and
XMLWriters). These are particularly
useful for transporting the data
across machines using HTTP,

ASP Request and Response objects,
or any other transport mechanism
you care to employ. The XML sup-
plied to the Read methods does not
have to use Microsoft tag names so
you can save XML using
TClientDataSet.SaveToFile and
then read it into a DataSet: see
Listing 8.

Conclusion
ADO.NET is a significant redesign
of ADO. Backwards compatibility
with classic ADO is low and many
existing ADO concepts have been
dropped (including pessimistic
locking and server-side cursors).
The new design is certainly more
elegant, and addresses the short-
comings of using classic ADO for
web development. Existing ADO
programmers have a head start in
learning ADO.NET, as many of the
basic building blocks can be seen
in ADO today in the form of batch
updates, disconnected record-
sets, custom (fabricated) record-
sets and DataShape.

Borland has already pledged
support for .NET in a future ver-
sion of Delphi (after Delphi 6) so
this is a technology which is well
worth watching.

Guy Smith-Ferrier is a Senior
Delphi Consultant for Borland’s
Professional Services Organisa-
tion in the UK. Contact Guy at
gsmithferrier@capellasoft.com

© 2001 Capella Software Ltd
The opinions of the author are not
necessarily the opinions of Borland

Method Description

ReadDiffGram Reads a DiffGram (a set of changes)

ReadXML Reads the XML schema and XML data

ReadXMLData Reads the XML data

ReadXMLRemoting Reads an DiffGram or XML schema and data

ReadXMLSchema Reads the XML schema

WriteDiffGram Writes a DiffGram

WriteXML Writes the XML schema and XML data

WriteXMLData Writes the XML data

WriteXMLRemoting Writes a DiffGram

WriteXMLSchema Writes the XML schema

➤ Table 2: DataSet methods for getting data in and out.

var
oRelation: DataRelation;

begin
oDataSet.Relations.Add_4(‘CustomerStates’,
oStatesTable.Columns.Item_2[‘State’], oCustomersTable.Columns.Item_2[‘State’]);

end;

var
oDataSet: DataSet;

begin
oDataSet:=CreateCOMObject(Class_DataSet) as DataSet;
oDataSet.ReadXml_4('ABC.XML');

end;

➤ Above: Listing 7 ➤ Below: Listing 8


	Supporting ADO.NET In Delphi
	Using SQLConnection And SQLCommand
	DataSetCommands
	DataSets, DataTables, DataColumns, DataRows And DataRelations
	Transporting The Data
	Conclusion

